
 
 

Gradient Master 
 
 
 
 
 
 
 
 
 
 
This is biocomp's premier gradient forming instrument.  
in as little as 40 sec, you can produce 6 identical, linear gradients using a patented process 
we call tilted tube rotation. The process involves layering the two end point solutions (i. E. 
5% and 30% sucrose) directly in the centrifuge tube, capping it and placing it in a special 
tube holder with a magnetic base (magnabase™) that adheres to a steep plate on the 
instrument. Two keystrokes later, the gradient master takes over and tilts the tube to the 
proper angle, rotates it for a designated time and returns it to its original vertical position.  
 
The introduction of the model 107 is the latest step in the evolution of this remarkable 
instrument. It has several new features that distinguish it from previous models. First, its 
memory contains all the run parameters for all the many different gradients we have 
developed for our customers. To see the list, select the rotor (ie sw41) you are using and 
then scroll through a list of the gradients organized by % and solute. To simplify things 
further, the “last” key on the keyboard recalls the last gradient run, so 2 keystrokes are all 
that are needed to duplicate a run.  
 
Second, the unit is now internet programmable. You can download new software yourself as 
upgrades become available. The gradient catalog is also upgradable so users can benefit 
from our ever-expanding set of run parameters. Solutes used so far include sucrose, 
glycerol, optiprep®, nycodenz®, ficoll®, percoll®, metrizamide, renografin®, nacl, cscl, naac, 
kcl. Like the old saying, the gradient master has never met a solute it didn’t like.  
 
The gradient master is also a patented, intelligent roller blot device that can perform all the 
blocking, blotting and reaction steps with unerring accuracy and reproducibility. Using our 
patented magnabase™ bottles which come in a variety of sizes to fit every blot without 
overlap, you can reduce your reagent use by 90% while obtaining superb blots.  
 
If you are serious about your gradient work, there is no competition for the gradient master. 
In nearly a thousand labs around the world for 18 years, it has become the gradient former 
of choice because of its simplicity, incredible speed and durability. features:the base unit 
includes a backlit lcd display, control knob and "smart" keypad for data entry and control. A 
6" steel plate is tilted and turned by two stepper motors. The kit includes mac and pc serial 
cables for programming the unit, a bubble level, two 4” cannula for layering of gradient 
solutions and a selection of allen wrenches for maintenance. 
 
 

Tel: 01759 301142 Fax: 01759 301143 E-mail: sales@wolflabs.co.uk 
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Gradient Fractionator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The era of high resolution gradient analysis has finally arrived. Introducing biocomp’s 
incomparable piston gradient fractionator, the world’s highest resolution fractionator.  
developed by a scientist who routinely does 6-30 gradient experiments, this device has more 
performance-enhancing features than all competing designs combined. You can recover 
slices from the gradient as small as 10 microns thick (300 micron fractions are more typical), 
visualize bands of particles as small as ribosomes with the naked eye, fractionate manually 
to recover visible bands or automatically to produce perfect gradient profiles, and rinse and 
blow dry your sample tubing after each fraction, eliminating cross-contamination between 
fractions.  
 
The most important technical advance is our patented “trumpet tip”™, an inverted tapered 
piston cone that gradually compresses bands of particles from horizontal discs into thin 
vertical columns. This advance greatly reduces the resolution-killing laminar capillary flow 
that tends to pull sample from a teardrop shaped area directly in front of the needle or cone 
used by our competitors. 
  
Another significant improvement is the readout of distance (0. 00 mm) from the meniscus 
down, so you know exactly where you are sampling in the tube.  
the results are nothing short of spectacular. In a recent paper, jardine & coombs (1998) 
resolved 4 distinct peaks of phage t4 capsids between 300s - 350s where previous reports 
fractionated by needle puncture had shown only one broad peak. One of the new particles 
was a new intermediate in head assembly that demonstrated that capsid expansion followed 
the beginning of dna packaging.  
 
The combination of the gradient master and the piston gradient fractionator offer a quantum 
leap in reproducibility and resolution. Call today for details. features:  
 

• visible light scattering band visualization system for particles as small as viruses and 
ribosomes.  

• >99% accuracy and reproducibility in piston movement with readout to 0. 01 mm. 
• programmable fractionation and rinsing.  
• rinse and air pumps to clean sample tubing after each fraction.  



• patented trumpet tip™ piston gradually compresses thin bands of particles into 
vertical      columns prior to capture.  

• uv scan capability with optional pharmacia uvm ii attachment.  
• internet programmability: the software installed in an instrument you purchase today 

is upgradable by simply downloading a new version into the fractionator directly from 
your computer using a supplied serial cable. 

 
 

Gradient Station 

 
 
This newly developed hybrid instrument performs both gradient forming and fractionating. The 
performance of its two elements, the Piston Gradient Fractinator™ and the Gradient Master™ is 
identical to the separate instruments.  
 
Please contact us on 01759 301142 or sales@wolflabs.co.uk for further information. 
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BH4 Fractionator 
 

 
 
Researchers working with deadly viruses at the NIH in Bethesda and Ft. 
Detrick MD asked us to develop a gradient fractionator that would be easily 
transported and fit inside the BSC4 hood. The standard Gradient Station or 
Piston Fractionator are too heavy and too large to fit these requirements, so 
we set out to reduce the height of the device and shave off some of its weight. 
The result is a fractionator that, at 9.5 kg, weights half as much as the 
standard one and fits easily into most BioHazard hoods. It has all the same 
features as the standard fractionator and uses the same tube holders as well. 
The maximum height allowed was 65 cm, but the new design comes in at 63 
cm. The danger of emitting dangerous aerosols during fractionation has been 
eliminated by removing the air pump, but it can be included it if desired. 
 
 
 

6-Piston Fractionator 
 

 
 
As the inventor of the piston fractionator, I was fortunate to be able to 
construct the fractionator of my dreams. My laboratory at the University of 
New Brunswick was studying phage T4 morphogenesis and routinely ran 6 to 
12 gradients every day. In some cases we harvested individual bands we 
could see with the light scattering visualization system, while in others we 



fractionated the gradient into individual equal fractions. At some point, I was 
taken by the idea that I could determine the entire T4 assembly pathway in 
vivo with a pulse chase experiment, taking dozens of samples at 20 second 
intervals. In the end, 42 gradients were required for each experiment, so 
something had to give on the fractionation end of the experiment. This gave 
birth to the 6-piston fractionator, permitting us to fractionate a whole bucket-
load of gradients while the next set was in the centrifuge. Imagine doing 42 
sucrose gradients in a single day! The result was an amazing experiment that 
mapped the in vivo assembly pathway of the T4 tail (see Ferguson and 
Coombs, 2000, JMB).  
 
Fast forward to 2010, when a researcher studying carbon nanotubes who had 
purchased the Gradient Station asked if we could make him a new version of 
the 6-P, as we call it, so he could increase his production to preparative 
levels. There are a many things that needed to be redesigned because he 
wanted to do gradients using CHCl3 and isopentane instead of sucrose, and 
these noxious chemicals damaged many components in the fluid path. The 6-
P is now available, whether you are doing aqueous gradients (sucrose, etc.) 
or organic solvent gradients. Let your imagination go where this new 
opportunity takes you. 
 
 

NanoFrac and NanoStation 
 

 
 
 
These variants of the standard PGF and Station are built for the nanotube, 
nanoparticle investigator. They incorporate all the lessons we learned 
designing and building the 6-P, so they tolerate both aqueous and organic 
solvents and most importantly, offer two types of illumination of the gradient: 
light scattering (white bands on black background) and colour (coloured 
bands on a white, backlit background). The key innovation was the use of the 
same light source for both types of gradients. The lamp can be positioned 
under the gradient for light scattering, or moved to the back, where it shines 
up through a glass window and reflects forward toward the back of the 
gradient with a slanted mirror. The tube holders are equipped with black and 
white inserts that are placed behind the tube in the tube holder for the two 
types of illumination.  
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Section 1. Gradient Theory.

1.0 The stable liquid column

Density gradients are marvellous creatures with unlimited potential for separation of 
biomolecules. They can be of any composition and volume and centrifuged in a variety of modes that 
can influence the separation.  This primer is a modest attempt to explain the use of this time-honored 
technique at a time when its use has declined in the face of “higher tech” solutions.  We will attempt 
to highlight its continued utility and the multiple advantages it has over other separation techniques.

The most important part of a density gradient is its density gradient. This may sound obvious 
and trite, but it is widely overlooked. The density gradient is the source of the gradient’s stability as 
well as its capacity for separation.  The top of the gradient must be dense enough to support the 
sample and the column must have enough of a density gradient to remain stable during the 
centrifugation and fractionation of the tube.  Thus, a 15-20% sucrose gradient will be much less stable 
than a 5-45% gradient.  

You can appreciate the need for stability by thinking of the contents of the tube as centrifugation 
begins and ends.  There is a period at both ends of a run when the tube is rotating in a vertical 
position with centrifugal force applied to its side, and two other periods when this force is gradually 
transferred to or from the vertical axis of the tube as the bucket begins to swing out at the beginning 
of the run or down at the end of the run. These are difficult times for the gradient and the only thing 
that prevents vertical mixing is the steepness of the gradient.  Moral: the greater the change in % 
between the top and bottom of a gradients, the more stable it is. As a general rule, the delta % should 
be ≥20% and as high as 40%. 

1.1 The choice of solute; density, viscosity, osmolarity

The choice of solute is dictated by the type of separation desired. Density gradients have been 
constructed from many solutes in the past 40 years so it might be useful to list some of the 
more common ones and describe their uses and limitations:

Sucrose: By far and away the most common solute.  It is cheap, very soluble, chemically inert and 
does not absorb in the UV. It has very high osmolarity, so it tends to be unkind to living 
cells, and at its maximum density is incapable of supporting biomolecules other than lipids, 
so its use is limited to rate zonal gradients for the most part.

Glycerol: A substitute for sucrose, sharing most of tis properties.  Used in cases where sucrose is 
harmful or insoluble in the downstream treatment of fractions.

CsCl (NaCl, KCl, KBr, LiCl): These salt gradients are useful when nucleic acids are banded, since 
the high solubility and density of some of these solutes can float these dense biomolecules. 
These gradients lack the viscosity of sucrose gradients and are less stable as a result (handle 
with care).  The denser of these solutes (CsCl and LiCl) will form gradients on their own 
under centrifugal force, so it is possible to simply mix the salt directly in the sample and let 
the gradient form during an overnight run.  The steepness of the gradient depends on the 
speed of the rotor (the x Gs applied to the tube).

K Acetate: Used in velocity banding of DNA/RNA fragments which are recovered from the 
fractions by adding isopropanol and precipitating the nucleic acid. 

Percoll™: Pharmacia introduced Percoll many years ago as a low osmolarity solute suitable for 
whole cell purification.  It is widely used in cell biology.  It has one unusual property that has 
limited its use: It is actually a suspension of tiny silica particles coated with 
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polyvinylpyrrolidone (PVP) that can not be removed by dialysis.  It self-forms gradients 
under centrifugation.

Nycodenz™: Originally developed as a radio-opaque dye for blood work, this Nycomed (now 
Axis-Shield)product has seen many years of use in cell purification.  It has low osmolarity, is 
dialysable and its gradients are self-forming.

Optiprep™ (iodixanol): A recent upgrade from Nycomed developed as a radio-opaque dye but 
currently enjoying robust gradient use, it shares many of Nycodenz’s properties and is less 
toxic in some applications.

Renografin™ (tri-iodinated benzoic acid, also called Angiografin, Hypaque, Renografin, 
Urografin, Urovison): An early radio-opaque dye used for density gradients, it is no longer 
seeing much use, since it had some serious health issues and is difficult to source.

Metrizamide (Amipaque): The earliest radio-opaque dye. Same as Renografin, but with a slightly 
different chemical structure.

Ficoll™: A high molecular weight sucrose polymer used in some cell separations.

Dextran: A high molecular weight polymer of glucose.  See Ficoll.

With so many choices, it is difficult to choose the right medium for the job.  Your best bet is to 
use PubMed and search with the words “gradient” AND “your particle of interest” and see what 
others have done, i.e. “gradient AND polysomes”. 

If you are intent on striking out on your own, choose the solute that best matches your needs.  If 
purifying a proteinaceous particle, sucrose or glycerol are usually the solutes of choice.  If you want 
to separate membrane fractions, you can sometimes still use these two solutes, but if the membranes 
contain more proteins than these solutes can support, then a denser medium is needed and the 
iodinated compounds are used. Whole cell preparations require the higher density, low osmolarity 
solutes.

1.2 Rate zonal (velocity) vs. Isopycnic (equilibrium) centrifugation

The kind of gradient you should use depends on the particle of interest and the other 
particles it is being separated from.

Velocity or rate zonal runs separate things on the basis of their mass and to a lesser extent 
on their density and shape. With these gradients, there is no point in the gradient capable of 
supporting the density of the particle of interest.  Consequently, the particle will continue to sediment 
through the gradient as long as centrifugal force is applied. Separation is based on a particle’s S value 
(Svedberg units).  This type of gradient is used when the particle has a unique S value.  Ribosomes 
(30S, 50S, 70S), phage and virus particles and sub assemblies (15S - 1200S) are typical examples. The 
separation is exquisitely sensitive to subtle changes in mass, density and shape and can reveal much 
in the way of a particle’s composition, conformation and assembly. 

The % sucrose or glycerol used can have a large impact on the separation. For separations 
of particles with similar S values, a relatively shallow gradient is used (i.e. 5-30%), whereas if the 
particles have very different S values (120S and 1200S), a steeper gradient is used (i.e. 5-45%). The 
viscosity of sucrose and glycerol solutions increase exponentially at high concentrations (they 
become syrupy), and this greatly increases the drag on the faster particles as they enter the bottom 
half of the gradient, allowing the lower S value particles to continue to separate from the cellular 
debris in the top half. 
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Often overlooked is the need for the top of the gradient to support the sample as it is 
layered on before the run. 5% solute is usually dense enough, but in cases of very concentrated 
extracts, 10% solute might be needed. Given that steeper gradients are usually better than shallow 
ones, the lowest % top solute needed will give a higher slope. More on this in the layering section 
below. 

The name “rate zonal” derives from the fact that the particles are applied to the top of the 
gradient as a thin “zone” and migrate through the gradient as distinct zones.  Sample size obviously 
matters here if the zone is to be thin in the first place, hence we have designed the Short cap (-R) 
which leaves 4 mm or room for the sample when it is removed (see below). We have shown that 
samples less than 3 mm in height as they sit on top of the gradient give essentially the same bands 
and that steep gradients can actually compress bands as they migrate through the tube (see the data 
below).

A little known fact about rate zonal gradients is the observation that sample losses become 
serious as the particles sediment to the bottom of the tube. The source of these losses is unknown, 
but may involve the collision of the particles with the wall and their subsequent loss from the band. 
The rule of thumb is to use the top 2/3 of the tube whenever possible for your best separation.

Equilibrium or isopycnic runs are a completely different from rate zonal ones. As their 
name implies, the particles of interest come to rest at their “isopycnic point”, the point in the density 
gradient that matches their density. No matter how long they are centrifuged after that, they remain 
in the same position.

Consequently, sample size is irrelevant so long as the gradient contains the isodense 
(isopycnic) zone capable of floating the particle.  Since sample volumes are generally much greater 
than in rate zonal runs, we have designed a Long cap (-I, 10 mm) for our gradient forming system 
(see below).

Samples can be applied to the top of the gradient or the bottom (in a suitable dense 
solution) from whence they “float” to their position. They can also be mixed with the solute in the 
case of self-forming gradients like CsCl and placed in the tube without a gradient being preformed. 
The speed of the rotor is very important here for it influences the rate at which the particles are 
driven to their isopycnic point and also because it can also impact on the shape of the gradient. 

As noted above, most of the equilibrium density media like CsCl or Optiprep are self-
forming, so that if you centrifuge 12-16 hr, a gradient will form at equilibrium with a shape that is 
dependent on the speed of the rotor: higher speeds yield steeper gradients. Pre-forming density 
gradients for isopycnic runs drastically reduces the run time, since particles begin to move 
immediately rather than waiting for the gradient to be established. 

Section 2. Forming density gradients

2.0 Step gradients

Step gradients are of very special but limited utility. The goal is to create a series of steps in 
density that will separate the particle if interest from its undesirable neighbors in a quick and dirty 
way. For example, if the particle density is 1.12 g/cc, the steps of 1.09 and 1.15 g/cc would trap these 
particles at the interface between the two steps in the very thin zone where this density exists. The 
downside is that these gradients are often used to separate membrane fractions when no real classes 
exist: they take a smear and make it look deceptively good by concentrating into a series of steps. 

When layering these gradients, start with the lightest step and underlay the next heavier 
step to avoid disturbing the step above.  Withdraw the needle as you layer, keeping just below the 
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interface of the two steps.

2.1 Non-linear gradients; exponential/isokinetic

In the 1960’s and 70’s, there was some interest in these unusual gradients because they 
matched the increasing rate of sedimentation at higher radii with an exponential increase in solute 
and viscosity, giving a dead heat: particles sedimented at the same rate over the entire length of the 
tube. The gradient forming part was very tricky, with the mixing chamber of the two chamber 
device (see below) sealed off to give a constant volume that the other solution diluted exponentially 
rather than  linearly. The fad seems to have passed.

2.2 Linear gradients (two chambers, freeze thaw, lay it flat)

Linear gradients are the most widely used type, both for rate zonal and equilibrium runs. 
They can be formed a number of different ways with varying degrees of difficulty and 
reproducibility. The simplest way to make them is with the standard two-chamber device in use since 
the dawn of centrifugation.  Equal volumes of the heavy and light solution are placed in adjacent 
chambers and allowed to mix in one chamber on their way into the tube. Done carefully, this is the 
best way to make a linear gradient. However, there are many problems with this method: the 
chambers don’t always empty at the same rate, one can only make a single gradient at a time.

A while back, someone discovered that you could freeze and thaw a homogeneous solution 
of sucrose in a tube a couple of times and the exclusion of the solute as the water froze into ice would 
lead to pure water and concentrated solute, eventually forming a gradient. Before you head off to 
your local freezer, however, beware of the technique that seems to be too good to be true. It is! The 
gradients are non-linear, they take days to cycle through the multiple freeze-thaws and most 
importantly, they are a gradient of everything, not just sucrose. All solutes are excluded from the ice 
and all end up forming a gradient, so you end up with a buffer gradient, a salt gradient and perhaps a 
bit of a pH gradient as well. The top of these gradients is essentially pure water, which is incapable of 
supporting a sample layered on top. Do not use these gradients!

Finally, the other way that has been proposed to make gradients is to layer the two 
solutions in the tube and cap it an lay it on its side and let the two solutions diffuse into a gradient. 
Needless to say, the timing of the diffusion would need to be carefully controlled and the result is 
decidedly non-linear.

2.3  Tilted tube rotation

This brings us to a completely different way to form linear gradients that is as non-intuitive 
as it is fast and reproducible. We call it tilted tube rotation.  The two end point solutions are layered 
into the tube, the tube is capped to lock in the solutions and out any bubbles, placed in a holder and 
rotated at a high tilt angle for a fixed time and speed.  Lacking any sophisticated training in fluid 
dynamics, the process is essentially empirical and unpredictable; there is no way of knowing what 
time/angle/speed combination will work for a particular tube, cap size and solute concentration, but 
once it is determined it is known forever. 
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The marker block is used to mark the half-full point on the tube for layering. The caps (short or long) 
retain the gradient during tilted rotation. Short caps are used for rate zonal runs where a small 
sample is needed, and long caps are used in isopycnic or equilibrium runs where sample size is less 
important. 
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A before and after scan of a gradient showing how tilted tube rotation can quickly, accurately and 
reproducibly produce a linear gradient from the two endpoint solutions layered in the tube.

                

2.4 Cushions and shelves

Cushions are often applied to the bottom of gradients to trap particles that might otherwise 
pellet to the bottom.  The best way of doing this is to remove the cushion’s volume from the bottom 
of a finished gradient and layer the cushion solution under the gradient. Its volume and density are 
determined by the type of particles to be trapped.  

2.5 Temperature

Temperature is an important part of gradient use, since some particles are very 
thermolabile. There are two ways to make gradients that will be used at non-ambient temperatures: 
Make them in the cold room with cold solutions and keep them cold until use or make them warm 
and then chill them before use.  While the “all cold” method is theoretically the best, it requires 
unreasonable temperature rigor to reproduce, since temperature has such a drastic effect on the 
density and viscosity of density media.  The chilling of room temperature gradients will lead to some 
convective mixing, but experience has shown that it is minimal. Since virtually all the run parameters 
for gradient forming were developed at room temperature, chilling the room temperature gradients 
is the way to go.
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Section 3. Layering and handling gradients.

3.0 Sample preparation
Whatever type of fractionation you plan to use, it is a good idea to apply a sample that is 

devoid of cell debris to the gradient. Give the sample a good 30 sec spin in a microfuge to clean it and 
be careful not to disturb the pellet as you harvest the sample before layering. Note that the % solute 
on the top of the gradient must be able to float your sample.  5% solute is usually enough, but 
beware of extracts derived from large numbers of cells; they can exceed the 5% density and fall 
through the tube until they find their own density, destroying your resolution in the process.  To test 
this, start with a 5% sucrose solution in a small beaker and hold it up to the light as you gently layer 
some sample into the center of the liquid. Watch for the sample to rise (OK) or sink (not OK).

3.1  Sample layering for velocity runs
If you want the highest possible resolution in your velocity (rate zonal) runs, you need to start 

with the thinnest possible sample on the top of the gradient. If your sample is smeared or 
overloaded, the bands overlap and the resolution drops precipitously. Illustrated below is a simple 
layering device that outperforms automatic pipettors and pasteur pipettes, is inexpensive and 
reusable if needed.

3.1.a. Gradient preparation: First, make your gradients with the short caps and remove 0.1 ml 
less than the sample you plan to apply. If you are going to layer 0.3 ml samples, remove ~0.2 ml 
from one of the gradients you have just formed. Drop this tube into a beaker with a Kimwipe 
pushed into it with your finger to support the tube upright and TARE them on a balance. Bring all the 
other tubes to within 0.05 g of the tared weight. This will allow you to load a constant volume of 
sample on the gradients and avoid having to rebalance the tubes before the run.

When removing the top of the gradient, use the same technique illustrated below to avoid 
disturbing or creating a discontinuity in the gradient: pull the interface up the wall with the device 
shown and then suck off the required amount.

If your gradients will be run at 4°C, now is the time to put them well spaced and exposed in a 
refrigerator for 30-45 min to equilibrate at this temperature.

3.1.b. The layering device: Take a sterile 1 cc pipette and roll a razor blade over the 0.4 ml line 
to etch it, then snap the pipette in half at this line. Connect it to a 1 cc syringe with a short piece of 
flexible tubing (silicone is best) as shown below. Make as many of these as you have different 
samples to layer.

3.1.c. Sample preparation: Always resuspend your sample in slightly more buffer than you 
plan to layer so you’ll be sure to have enough of every sample. If you want to layer 0.3 ml, 
resuspend your sample pellet in 0.4 or 0.45 ml.  When the cells are thoroughly resuspended and 
lysed, give them a 30-60 sec spin in microfuge tubes at 14,000 rpm to pellet the large debris.  

3.1.d. Sample layering: Start by pulling 0.05 ml of air into the syringe to allow you to expel the 
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last bit of sample when layering. Now, with the pellet on the high side of the microfuge tube, suck off 
the supernatant to the desired volume on the pipette (0.3 ml in the photos below). Leave no air in the 
tip of the pipette as shown: sample is flush with the end.

Start layering.  Keep raising the tip up the wall to keep it above the level of the sample in the tube. 
When you are done and the last bit of sample has been expelled from the pipette, you are finished.
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Tubes with different diameters will obviously have different sample capacities. As a general 
rule, your sample should be no more than 2.5 mm high to give the highest resolution. Samples that 
are higher than this will degrade resolution to some extent, depending on the endpoints of the 
gradient: Note that higher bottom endpoints (45%) preserve resolution.

3.2 Gradient buffers

Be creative here (or not). The buffer in the gradient can selectively preserve or disrupt the 
particle of interest.  Be aware of the effects of divalent cations, ionic strength, pH and detergents. 

3.3 Sample size, layering and band compression

The volume of the sample that can be loaded on the top of a gradient depends greatly on 
the type of gradient you are running.  For rate zonal runs, the sample should lie on the top of the 
gradient in a layer that is 1-3 mm thick. Oddly, smaller samples volumes than this do not yield 
sharper bands.  However, thicker samples will degrade band sharpness.  Steep gradients will 
compress the leading edge of bands and allow larger sample heights, as well as preventing sample 
loss to the wall during the run.  See the detailed discussion below.

Isopycnic runs have no real restrictions on sample volume and can be loaded on the top, 
bottom or mixed with the solute if the gradient is self forming. The only thing that really matters is 
that the area of the gradient where the particle will band has a steady, and fairly steep density 
gradient to it. Remember that, given 12-16 hr, self forming solutes will come to their own gradient 
profile depending on the speed and the rotor .

3.3.a The value of a steep gradient.

One of the most widely used density gradients is the 5-20% (w/v) sucrose gradient.  While it may 
perform adequately for some applications, as we show below, it has many faults compared to its 5-
45% cousin.           
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Figure 1.  Performance of 5-20% sucrose gradients.  35S-labeled T4 phage were centrifuged 
on the L5-75 ultracentrifuge using the integrator preset at the indicated w2t values.  Two 250 w2t 
gradients were run and 3 each of the 500 and 750 w2t samples were run together.  The sample 
volume was 0.1 ml and the tube was run in the SW41 rotor.  The horizontal axis is calibrated in old 
“crank” units, where one turn of the crank handle or fraction = 1.90mm. 
   

The figure demonstrates three important points.  First is the loss of peak height the further down 
the tube the band sediments.  The reduction arise from two sources; sample loss and band spreading.  
Of the 100% of counts loaded on the top of the gradient, 63% are present in the 250 w2t sample, 53% 
in the 500 w2t sample and only 38% in the 750 w2t sample.  The most likely source of the loss of 
counts is sample adsorption to the wall of the tube.  Any particle that diffuses laterally into the wall 
will either adsorb to it or sediment to the bottom of the tube and be lost from the band.  The band 
spreading evident in the lower bands arises from top to bottom band diffusion. 

It has been known for some time that 5-20% sucrose gradients in a variety of rotors are 
isokinetic; that is, the sedimentation distance of a particle is directly proportional to sedimentation 
time at any given speed.  This is born out in a plot of the peak positions in Figure 1 vs the total w2t 
they experienced, including acceleration and braking. 
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Figure 2.  Peak position vs. total sedimentation.  This type of plot can be useful in two ways.  If 
you know how far a particle sediments at a given speed or time of centrifugation, you can easily 
calculate how far it will travel if you change a run parameter.  Distance will be directly proportional 
to w2t or approximately to the run time at a given speed, and inversely proportional to the square of 
the rotor speed.  If you increase rpms from 33,000 to 41,000, run time will be (332)/(412) = 0.648 x the 
original run time at 33K rpm.          

Another consequence of the isokinetic property of a 5-20% gradient is that particle S values are 
directly proportional to distance travelled, so the S value of an unknown can be calculated by 
determining the relative sedimentation rate of a known particle in the same gradient.  Thus if a 70S 
particle sediments 47 mm into a gradient, a particle banding at 22 mm has an S value of (22/47)*70= 
33S.

Figure 1 also illustrates the high level of reproducibility of the Total System.  Using our “First 
Drop” method of aligning the top of each gradient, we have achieved ±0.5 mm reproducibility 
between tubes in the same run.  Thus, only when ultra-fine fractions (0.2-0.4 mm) are being taken is it 
necessary to include a marker in each tube to align the gradient profiles. 

The loading capacity of the 5-20% gradient is illustrated in Figure 3.  An identical amount of 
labelled phage was diluted to the indicated volumes (0.1, 0.25, 0.5, 0.75 ml) and loaded on 5-20% 
gradients.  All 4 gradients were run together and the peaks aligned on the spread sheet to illustrate 
the band spreading evident in larger samples.
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Figure 3.  Loading volume influences band width; 5-20% gradient.  While the 0.1 and 0.25 ml 
samples gave identical peak shapes, the 0.5 and 0.75 ml sample volumes clearly lead to a broadening 
of the band and the resultant loss of resolution.   Thus, for the SW41 rotor tubes, sample volumes in 
5-20% gradients must be limited to 0.25 ml and fairly short runs if high resolution is required.  These 
gradients were fractionated using the hand crank (pre-motorized).

A final limitation of these gradients will become evident when examining the 5-45% profiles 
below.  The range of S values that can be separated on a given gradient is limited here because the 
low viscosity and density of the 20% end point does not retard the sedimentation of large particles.  
In Figure 1, for example, particles with an S value of 250-750S would have been separated adequately 
but 1000S particles  would have pelleted in this run.  
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Steep Gradients Offer Many Advantages  

We have used 5-45% (w/v) sucrose gradients for many years and find their resolving capabilities 
far superior to 5-20% gradients.  The advantages stem from two main properties.  The increased 
steepness of the gradients makes them inherently more stable during sample layering, handling and 
centrifugation.  The increased viscosity and density of the 45% endpoint reduces diffusion, causes 
band compression and increases the range of sizes that can be separated on a single gradient.

Figure 4 demonstrates several of these points. T4 phage samples (0.1 ml) were layered on 
identical 5-45% sucrose gradients and run to the indicated preset integrator values as before.       

  

Figure 4.  Performance of 5-45% sucrose gradients.  Of 100% of the counts loaded on the top of 
each gradient, the amount remaining in the band is 77% in the 250 w2t sample; 66%, 59% and 48% in 
the 500, 750 and 1000 w2t bands, respectively.  Thus sample recovery is significantly better here, 
perhaps because the increased viscosity in the bottom half of the tube decreases the diffusion and loss 
of sample from particles colliding with the wall.

Also notice that rather than increasing in volume as the bands sediment further into the gradient, 
there is actually a small band compression evident here.  

The range of sizes separated is also greater, so, for example, particles from 250S to 1000S would 
all be well resolved on the same gradient, and increase of 30% in range over 5-20% gradients.  Of 
course, this increase range comes with a slight degradation  of the isokinetic property as illustrated 
below.       
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Figure 5.  Peak position vs. total sedimentation; 5-45% gradient.  Here we have plotted the 

position of the T4 phage peaks at various w2t.  The function above the figure is a perfect fit for the 
data points and reveals the slightly non-isokinetic  behavior of this steeper gradient.  However, it is 
still possible to determine the S value of a particle relative to a known S marker.  Suppose that our 
marker, a 950S particle (T4 phage), sediments to position 39.2 mm at 1000 w2t.  A particle 
sedimenting to position 15.7 in the same gradient has reached the position of our phage marker 
sedimented for  365 w2t (solve the equation for x = 15.7).  The unknown therefore has an S value 
365/1000 x our marker (950S) = 347S.  Using this logic, the graph can be converted into an S value 
graph by fixing the w2t value (say at 1000) and converting the Y axis to S value.  Thus the 1000 w2t 
position becomes 950S, the 365 w2t position becomes 347S and so on.  The present technique has the 
inherent advantage of being empirically determined under your actual run conditions.  Of course, the 
availability of an S value marker is required.  
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Effect of Sample Volume in 5-45% Gradients
  

The sample capacity of 5-45% is quite remarkable.  As illustrated in Figure 6  below, when 
volumes ranging from 0.1 to 0.5 ml are layered on top, the bands are indistinguishable.  Even at 0.75 
ml, while the peak height is slightly reduced, the band volume is about the same; 0.3 ml.  Thus the 
compression is a real advantage since large samples can be loaded with little or no loss of resolution. 
  

Figure 6.  Effect of sample volume on peak width in 5-45% gradients.  The band spreading 
evident in the 5-20% gradients is almost completely absent here.  In fact, bands loaded in >0.5 ml 
samples volumes are recovered in less volume than the sample.  This is the result of the compression 
of the leading edge of the band as it continually enters zones of significantly increased viscosity and 
density in the steep gradient.  
 

Thus, resolution, sample recovery, band compression and S value range of a 5-45% gradient are 
all improved over the 5-20% gradient.  The price one pays for the isokinetic property of a 5-20% 
gradient is clearly not worth the modest gain in mathematical ease it offers.  
 

The graphs and tips shown here illustrate the value of reproducible gradient forming and 
fractionation.  The full potential of gradients to separate and analyze macromolecular structures 
cannot be realized until these processes are completely standardized.  

3.4 Loading the tubes in the rotor, running, unloading

Once the sample has been loaded, the gradients must be handled with great care to avoid 
mixing the sample with the upper layers, especially in rate zonal runs. The same is true with 
gradients that have been run and are awaiting fractionation. It is a good idea to keep the fractionator 
close to the centrifuge to avoid long and dangerous trips down crowded hallways. The sensitivity of 
the sample to acceleration and braking will depend on the centrifuge and the gradient. A steep, 
viscous gradient will be fairly resistant to disruption, while a shallow one may not be.  A good idea is 
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to establish the sharpness of your bands with gentle acceleration and braking and then seeing if 
faster starts and stops hurt the resolution.

Section 4. Fractionating gradients

4.0  The essential problem: Laminar capillary flow; getting a flat band into a thin column.

There is a round hole/square peg problem that has plagued gradient work from its 
inception: the bands are thin horizontal discs and the devices used to retrieve them are invariably 
thin tubes at some point. Thus the problem is one of conversion between the two geometries. In 
addition to this, the tubing exhibits laminar capillary flow, where the central lamina has the highest 
velocity and the zero boundary adhered to the wall is stationary. This makes the conversion even 
more difficult than it already is and is a little-appreciated part of gradient fractionation because the 
high velocity central lamina tends to pull gradient solution from directly in front of itself, reaching far 
beyond the zone that is supposed to be entering the tubing system. This degrades resolution because 
different layers are being sampled at the same time.

4.1 Needles; straight and side hole: 

As shown by the figures, these are the poorest ways to fractionate a gradient.  The central 
lamina is offered unfettered access to layers far beyond the one next to the tip of the needle and the 
resultant loss of resolution is severe.
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4.2    Cones: Cones used in many fractionation devices are a first attempt to deal with the central 
lamina problem.  Unfortunately, at anything but the slowest speeds, they smear out your 
fractions, albeit to a lesser extent than the needles.



4.4 A Comparison of different tip designs
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4.5 The Piston Fractionator

The basic design of the Piston Fractionator is to force a piston tipped with a trumpet tip/seal 
down into the tube to displace the gradient layer by layer from top to bottom.  The piston is driven 
by a high resolution stepper motor coupled to an acme screw and offers 10 micron resolution with 
99.9% accuracy.  
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4.6 The highest resolution fractionation ever achieved.

This is not an idle boast. Never before has gradient fractionation been able to offer 
resolution comparable to HPLC.  Using the Trumpet Tip™ described above to nearly eliminate 
smearing of peaks, and the unique rinse/air cleaning system described below, you can now routinely 
achieve ultrahigh resolution profiles of your gradients. 

4.6.a. High resolution and reproducibility: 

Examine the three gradients superimposed below.  The top version shows how the gradients
look at 1X, where the X-axis represents the length of the tube. The bottom version shows the same
data plotted to include just the area that was sampled. This illustrates another important advantage of
this system: you can concentrate your analysis on one or more areas of the gradient with high
resolution while ignoring unimportant areas.
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4.6.b. Teasing out new species: 

Here is another example (Jardine & Coombs, 1998) of a series of gradients used to identify the
elusive, but critically important phage T4 head packaging intermediate, the ISP (initiated small
particle) following a pulse-chase of infected cells. The transient shoulder on the right side of the graph
labelled 48 mm is the peak in question. This experiment follows the same protocol used by Laemmli 
& Favre (1973), but their analysis obtained by dripping from the bottom and showed only two large
peaks. Just imagine what this kind of resolution could do for your experiments.
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4.6.c. Resolving small protein complexes:  

 The figure below from Peter Sorger’s lab, then at MIT, shows the purification of a small protein
complex (210 kD heterodecamer; 7.4S) on glycerol gradients using the Gradient Master and Piston
Fractionator. This rate zonal gradient clearly outperformed columns in the purification, both in peak 
width and r2 values for the marker proteins on two separate runs. 
(Miranda J.J., De Wulf, P., Sorger, P.K., Harrison, S.C. 2005. The yeast DASH complex forms closed
rings on microtubules Nat Struct Mol Biol.  Feb;12(2):138-43.)
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4.6.d . Resolving carbon nanotubes

A recent development in the field of physics is the use of gradients to purify the various morphs 
of carbon nanotubes.  The work was pioneered by Dr. Mike Arnold during his PhD work in 
Mark Hersam’s lab at Northwestern (Arnold et al, 2006, Nature Nanotechnology. 1:60).  
Mike used a clever coating technique and isopycnic Optiprep (iodixanol) gradients to sort 
the various diameter nanotubes, and was able to test their very different properties.  This 
spawned a whole new field as many labs adopted this technique to purify nanotubes. Mike 
used the Piston Fractionator to achieve the resolution he needed:
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4.7 The band visualization system and manual fractionation

Particles larger than ribosomes in sufficient concentrations scatter visible light to such an 
extent that they can be viewed with the unaided eye.  The piston fractionator makes three significant 
improvements in this area.  First, the tube holder surrounds the tube in black to offer the best 
background for viewing. Second, the holder is designed to permit the tube to be immersed in water 
to eliminate light scattering on the surface of the tube. This feature greatly increases the sensitivity of 
the light scattering bands.  The third improvement is the elimination of the lens effect that the bottom 
of the tube has on the illumination from below.  The entire length of the tube is illuminated.
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The fractionator kit includes a small T-square to allow the user to mark the position of the 
bands on a piece of tape placed alongside the gradient.  The marks at the top and bottom of each 
band guide the manual recovery of any number of bands from a tube.  The piston tip is lowered to 
the top line, the tubing is rinsed and dried with air, the piston is moved to the bottom line and the 
sample still in the tubing is recovered with a short burst of air. Sample recovery is complete since the 
piston displaces the entire band.

4.8 First drop/Reset; synchronizing gradient profiles.

A close inspection of balanced tubes reveals some variation in the height of the meniscus. If 
all gradients were fractionated from a fixed vertical spot, this variation would offset the resulting 
profiles.  To counter this effect, we eliminate any offset by lowering the piston into the tube 
manually, slowing down as the piston approaches the meniscus and then proceeding on down until 
the first drop appears at the end of the sample tubing.  At this point, the display is reset to 0.00 mm 
and fractionation proceeds, with all gradients reasonably well synchronized. There is still some 
variation between profiles (± 0.5 mm), and if needed, this can be eliminated by the introduction of a 
sedimentation or density marker.

4.9 Fraction size

The question often arises as to what the most advantageous sample size is, given that the 10 
micron resolution is obviously overkill. In our experience the smallest sample worth taking is 0.3 
mm/fraction. Since the amount of protein, nucleic acid or dpm declines with the sample volume, 
there is a point where these become limiting.  A good rule of thumb from the HPLC folks is to 
ensure that each peak has about 10 data points to describe it. practice will reveal the sample size that 
gives that resolution.  

Another factor to consider is the reason for doing the gradient.  If the purpose is to survey 
the entire gradient in X number of samples, measure the distance from the bottom of the piston tip at 
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reset (see above) to the bottom of the cylindrical part of the tube and divide this distance by X. On 
the other hand, most gradients have large areas of little or no interest. In this case, set up a multistep 
run where a few large fractions are taken (and discarded) and fine fractionation begins where the 
important particles are.

4.10 Sampling the bottom of the tube

A word on the inaccessible round bottom of the tube. Some users want to fractionate right 
to the last drop in the tube but the piston is not able to penetrate into the round end.  It may take 
some convincing, but particles that have entered this round zone are not worth fractionating since 
they have encountered the wall pinching in from the sides and are no longer representative of the 
same forces that the rest of the gradient has experienced. There is also the danger of damaging the 
piston tip seal as it is compressed in the round end.

4.11 U.V. Fractionation

Large numbers of users are interested in viewing the gradient profile by UV. The 
fractionator accommodates this role effortlessly, since it is programmable to take the entire contents 
in one large fraction at a single fixed speed. We have been recommending the BioRad EM-1 Econo 
UV Monitor, with its flow cell attached to the moving piston head so that the tubing connection, with 
its unavoidable smearing, is kept to an absolute minimum. The output from the EM-1 is an analog 1 
V signal that we convert to digital with 1:106 resolution for importing into an Excel spreadsheet. This 
way, no runs are lost because the strip chart was set wrong and the profile can be formatted for 
publication.  Here is a photo of the EM-1 attached to the fractionator’s moving head.

    
Incredibly, even polysomes are visible to the naked eye with the visible light scattering 

system. The same gradient gave the profile shown to the right. 
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    4.12 The rinse/air valve system.

The piston fractionator offers something no other fractionator ever has: the ability to rinse 
and dry the tubing between fractions from the point of gradient capture to then end of the tubing.  
The result is even sharper resolution with little or no smearing of bands. The key here is to tailor the 
automatic rinse protocol to match your needs.

  
How the valve works: Liquid is forced up through the bottom O-ring, lifting the ball off the O-ring as the 
piston moves down into the gradient .  The liquid then passes out through the red SAMPLE line to the collector. 
Between fractions, AIR is pumped down through the duckbill and into the ball chamber, forcing it onto the O-
ring and sealing off the gradient below. Air then passes out through the red sample line.  RINSE is pumped 
into the air’s duckbill chamber, down into the ball chamber and out the red sample line. Since water is not 
compressible, the check valve for the rinse line is inside the main unit where it prevents back flow into the 
rinse system. 

30



Section 5. Post-gradient sample manipulations

5.1 TCA/SDS-PAGE

Add 1/10 vol of 100% w/v TCA, ice the sample for 30 min, spin for 5 min, rinse with 10% 
TCA, Acetone-Tris, dry and you have samples ready for SDS PAGE.

5.2 Native gels

native gels are a little trickier because the samples may need to be concentrated without 
resorting to TCA.  The best solution we have found is the Centricon-type centrifugal filter.

5.3 Scintillation counting

The most perfect profiles obtainable come from counting the whole sample with a small 
volume rinse included with each fraction.  Most scintillation cocktails can tolerate the rinse with no 
quenching.  Alternatively, you can fractionate and then sample the fractions with a pipetteman so 
that you can analyze the contents of peak fractions by PAGE.

5.4 UV detection

Take undiluted fractions to the spectrophotometer for UV profiles when the need arises in the 
absence of a flow cell.
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SAMPLE LAYERING FOR VELOCITY RUNS 11/1/08

If you want the highest possible resolution in your velocity (rate zonal) runs, you need to start with the thinnest 
possible sample on the top of the gradient. If your sample is smeared or overloaded, the bands overlap and the resolution 
drops precipitously. Illustrated below is a simple layering device that outperforms automatic pipettors and pasteur pipettes, 
is inexpensive and reusable if needed.

Gradient preparation: First, make your gradients with the short caps and remove 0.1 ml less than the sample you plan to 
apply. If you are going to layer 0.3 ml samples, remove ~0.2 ml from one of the gradients you have just formed. Drop this 
tube into a beaker with a Kimwipe pushed into it with your finger to support the tube upright and TARE them on a balance. 
Bring all the other tubes to within 0.05 g of the tared weight. This will allow you to load a constant volume of sample on the 
gradients and avoid having to rebalance the tubes before the run.

When removing the top of the gradient, use the same technique illustrated below to avoid disturbing or creating a 
discontinuity in the gradient: pull the interface up the wall with the device shown and then suck off the required amount.

If your gradients will be run at 4°C, now is the time to put them well spaced and exposed in a refrigerator for 30-45 
min to equilibrate at this temperature.

The layering device: Take a sterile 1 cc pipette and roll a razor blade over the 0.4 ml line to etch it, then snap the pipette in 
half at this line. Connect it to a 1 cc syringe with a short piece of flexible tubing (silicone is best) as shown below. Make as 
many of these as you have different samples to layer.

Sample preparation: Always resuspend your sample in slightly more buffer than you plan to layer so you’ll be sure to have 
enough of every sample. If you want to layer 0.3 ml, resuspend your sample pellet in 0.4 or 0.45 ml.  When the cells are 
thoroughly resuspended and lysed in microfuge tubes, give them a 30-60 sec spin at 14,000 rpm in a microfuge to pellet all 
the large debris.  

Sample layering: Start by pulling 0.05 ml of air into the syringe to allow you to expel the last bit of sample when layering. 
Now, with the pellet on the high side of the microfuge tube, suck off the supernatant to the desired volume on the pipette (0.3 
ml in the photos below). Leave no air in the tip of the pipette as shown: sample is flush with the end.

       



This is the critical part: with the pipette nearly horizontal, insert the tip into 
the top of the gradient on the far wall and tilt the pipette to pull the meniscus 
up the wall.  

  

Start layering.  Keep raising the tip up the wall to keep it above the level of the sample in the tube. When you are done and 
the last bit of sample has been expelled from the pipette, you are finished.

 



Tubes with different diameters will obviously have different sample capacities. As a general rule, your sample should 
be no more than 2.5 mm high to give the highest resolution. Samples that are higher than this will degrade resolution to 
some extent, depending on the endpoints of the gradient: Note that higher bottom endpoints (45%) preserve resolution.

In the two phage gradients below, T4 phage were run about half way down an SW41 tube in the gradients listed and 
fractionated to observe the band resolution.  The 5-20% run showed significant band spreading with the 0.5 ml sample, 
while the 5-45% run showed much less spreading with this same sample. 



Polysome profile:  SW41, 0.3 ml sample.
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